Poincaré type theorems for non-autonomous systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bolzano-Poincaré Type Theorems

In 1883–1884, Henri Poincaré announced the result about the structure of the set of zeros of function f : I → R, or alternatively the existence of solutions of the equation f x 0. In the case n 1 the Poincaré Theorem is well known Bolzano Theorem. In 1940Miranda rediscovered the Poincaré Theorem. Except for few isolated results it is essentially a non-algorithmic theory. The aim of this article...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Rotation number and its properties for iterated function and non-autonomous systems  

The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...

متن کامل

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

New existence and multiplicity theorems of periodic solutions for non-autonomous second order Hamiltonian systems

In the present paper, the non-autonomous second order Hamiltonian systems { ü(t) = ∇F(t, u(t)), a.e. t ∈ [0, T ] u(0)− u(T ) = u̇(0)− u̇(T ) = 0, (1) are studied and a new existence theorem and a new multiplicity theorem of periodic solutions are obtained. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2008

ISSN: 0022-0396

DOI: 10.1016/j.jde.2008.05.005